Slow-growing cells within isogenic populations have increased RNA polymerase error rates and DNA damage

نویسندگان

  • David van Dijk
  • Riddhiman Dhar
  • Alsu M Missarova
  • Lorena Espinar
  • William R Blevins
  • Ben Lehner
  • Lucas B Carey
چکیده

Isogenic cells show a large degree of variability in growth rate, even when cultured in the same environment. Such cell-to-cell variability in growth can alter sensitivity to antibiotics, chemotherapy and environmental stress. To characterize transcriptional differences associated with this variability, we have developed a method--FitFlow--that enables the sorting of subpopulations by growth rate. The slow-growing subpopulation shows a transcriptional stress response, but, more surprisingly, these cells have reduced RNA polymerase fidelity and exhibit a DNA damage response. As DNA damage is often caused by oxidative stress, we test the addition of an antioxidant, and find that it reduces the size of the slow-growing population. More generally, we find a significantly altered transcriptome in the slow-growing subpopulation that only partially resembles that of cells growing slowly due to environmental and culture conditions. Slow-growing cells upregulate transposons and express more chromosomal, viral and plasmid-borne transcripts, and thus explore a larger genotypic--and so phenotypic--space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase

Transcriptional slippage is a class of error in which ribonucleic acid (RNA) polymerase incorporates nucleotides out of register, with respect to the deoxyribonucleic acid (DNA) template. This phenomenon is involved in gene regulation mechanisms and in the development of diverse diseases. The bacteriophage λ N protein reduces transcriptional slippage within actively growing cells and in vitro. ...

متن کامل

Escherichia coli RNA and DNA polymerase bypass of dihydrouracil: mutagenic potential via transcription and replication.

Dihydrouracil (DHU) is a DNA base damage product produced in significant amounts by ionizing radiation damage to cytosine under anoxic conditions. DHU represents a model for pyrimidine base damage (ring saturation products) of the type recognized and repaired by Escherichia coli endonuclease III and its homologs in other species. We have built this lesion into synthetic oligonucleotides, with D...

متن کامل

Investigation of the Effect of Lactobacillus Brevis Bacteria on the Expression of Rel A, IKB, and Casp3 Genes in HT29 Colon Cancer Cells

Aims Studies have shown that probiotic bacteria inhibit the onset and progression of carcinogenesis through different pathways. Our objective in this study was to determine the effect of probiotic bacteria on the expression of growth-related genes Rel A, IKB, and Casp3 in HT29 colon cancer cells Methods & Materials In this study, the Lactobacillus brevis probiotic bacteria were first cultured,...

متن کامل

Replicative fidelity of lentiviral vectors produced by transient transfection.

Previous investigations have estimated the human immunodeficiency virus type 1 (HIV) base pair substitution rate to be approximately 10(-4) to 10(-5) per round of viral replication, and HIV has been hypothesized to be more error-prone than other retroviruses. Using a single cycle reversion assay, we unexpectedly found that the reversion rates of HIV, avian leukosis virus and Moloney murine leuk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015